摘要

红外图像复杂度度量是自动目标识别及其跟踪性能评估的重要组成部分。传统的度量指标如统计方差、信杂比等针对的皆是单帧图像,而对于图像序列复杂度度量的研究寥寥无几。针对该问题,提出一种面向自动目标跟踪的红外图像序列复杂度度量方法。首先,对影响目标识别及其跟踪因素进行分析,明确了红外图像序列中影响目标识别及其跟踪的具体原因,以此为依据构建基于特征空间的目标混淆度和目标遮隐度指标;其次,通过灰色关联法优化特征空间,使目标混淆度和目标遮隐度指标更加合理;最后,结合识别与跟踪的特点,选择合适的加权平均函数和非线性变换函数,实现图像序列复杂度度量。实验表明,与图像序列评价指标如序列相关度、帧间目标变化度相比,文中提出的评价指标与跟踪误差的单调关系更好,是一种有效的图像序列复杂度评价标准。