基于深度学习的实时车辆检测研究

作者:黄生鹏; 范平清*
来源:软件工程, 2021, 24(01): 13-5.
DOI:10.19644/j.cnki.issn2096-1472.2021.01.004

摘要

针对城市交通复杂场景下车辆检测存在准确率低的问题,提出改进SSD(单发多箱探测器)目标检测算法。首先基于轻量化的PeleeNet(一种基于密集卷积网络的轻量化网络变体)网络结构改进SSD算法中VGG16(视觉几何群网络)特征提取网络,在保证提取丰富特征的前提下,有效地减少模型参数,提高模型的实时性;其次设计了多尺度特征融合模块和底层特征增强模块,提高特征的表达性能;最后根据数据集中目标的大小调整默认框的长宽比例,并在后三个特征层的每个单元上增加默认框。实验结果表明,改进后的目标检测算法的准确率mAP(平均精度)为79.83%,与原始SSD相比提高了2.25%,并验证了改进SSD算法的有效性。

全文