摘要

为了充分提取图像特征信息,同时减轻模型过拟合,提出了一种改进的多通道卷积神经网络模型。首先,利用三条卷积通道提取图像特征信息,各通道选择不同的卷积核大小,并利用小卷积核堆叠代替大卷积核的方法减少模型参数,再采用特征融合与批标准化技术对特征信息进行处理,最后输入到softmax分类器进行分类。将改进模型、单通道模型、多通道模型、传统图像分类模型用于对CIFAR-10数据集进行分类。实验结果表明,改进模型可以有效提取图像特征信息,减轻过拟合,进而提升模型的分类精度。