摘要

为提高粮食产量的预测精度,针对粮食产量的数据特点,提出了在小波变换的基础上,结合GM(1,1)模型与ARIMA模型的优点,建立GM(1,1)-ARIMA组合预测模型。首先,通过小波变换对非平稳序列进行分解,得到近似分量和细节分量;针对各分量序列的不同特征,采用灰色GM(1,1)模型对近似分量进行趋势预测,为进一步提高趋势信号的预测精度,使用灰色GM(1,1)模型对预测序列进行残差修正;然后,采用ARIMA预测模型对分离出的细节分量进行预测;最后,通过小波重构得到粮食产量的预测值。预测结果表明,基于小波变换的GM(1,1)-ARIMA模型的拟合平均误差为0. 69%,通过对2011—2014年粮食产量的预测,其预测平均误差低于1%,为粮食产量预测提供了一种新的技术途径。

全文