摘要
X波段的高分辨率极化干涉合成孔径雷达(synthetic aperture radar,SAR)图像包含较强的斑点噪声,不利于地物分类等应用.针对这一问题,先使用Nonlocal滤波进行预处理,然后提取图像的极化特征和干涉特征,再使用支持向量机(support vector machine,SVM)和AdaBoost分类器对极化和干涉特征矢量进行分类.利用N-SAR系统于渭南市采集的极化干涉SAR数据进行验证,该数据共包含10类地物,并有足够的ground truth用来进行分类器的训练和测试.实验结果表明,AdaBoost分类器能对多类地物取得较好的分类效果,且干涉信息的加入能带来一定改善.
- 单位