摘要

密度峰值聚类的收敛速度较快且无需人工设置最佳聚类数,更具备高鲁棒性特点,可以在工业负荷预测中进行用户用电行为的模式识别与分类,然后进行预测,具有较高的实际应用价值。但是该算法在小样本条件下聚类效果不佳,容易"遗漏"样本中的聚类中心。针对这种情况,进行类间距离优化和类内距离优化,使待聚类数据更容易被分类,对用户用电行为进行深入地挖掘分类,再使用灰色关联度确定待预测日所属类簇,使用GRNN神经网络进行负荷预测。通过Matlab仿真,可以得出结论,文中方法可以有效提高工业用户用电负荷数据的聚类效果,并提高负荷预测的精度。

全文