摘要
从自然语言描述文本中提取网络攻击知识存在语义鸿沟,导致TTPs威胁情报自动化利用低。为提高威胁情报自动分析效率,设计并实现了基于ATT&CK的APT攻击语义规则。首先,构建带标签的有向图语义规则模型,对自然语言文本描述的攻击技术进行知识化描述;其次,定义语义规则,阐释网络实体属性及其逻辑运算关系的形式化描述方法;最后,利用关键词组识别、知识抽取等自然语言处理技术,从攻击技术文本中抽取形成123个APT攻击语义规则,涵盖ATT&CK的115项技术和12种战术。利用模拟场景采集的APT攻击日志数据,对语义规则进行验证,实验结果表明,语义规则检出率达到93.1%,并具备一定的攻击上下文信息还原能力,可有效支撑威胁检测分析。
-
单位信息工程大学