摘要
现有的YOLOv5模型无法精确检测出进入复杂施工现场内的人员佩戴安全帽问题,本文提出了一种基于YOLOv5的安全帽检测算法。模型的具体改进方法为:在主干网络中新增了一个小目标层P2和3-D注意力机制SimAM,提升算法的特征提取能力便于能够更容易检测出小目标;将边框损失函数CIoU_Loss改为SIo U_Loss,以提升对小目标检测的训练速度与精度,从而得到一种新的安全帽佩戴检测模型。实验结果显示,修改后的YOLOv5s算法大大提高了复杂工程现场安全帽检测的准确率,较原有的算法提高了1.4个百分点,mAP值达到了95.5%。
- 单位