摘要
针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络MobileNetv3代替CSPDarknet53作为骨干网络,结合高效通道域ECA模块和空间域注意力机制(STNet)构建混合域注意力网络(ECSNet),改进了MobileNetv3嵌入ECSNet,并且提升了模型对空间和通道的关注度.引入深度可分离卷积块代替网络中3*3卷积,并将YOLOv4的检测头(Prediction Heads)缩减为2种尺度,轻量化模型降低网络复杂度和训练难度,完成ECSMv3_YOLOv4模型的搭建,使用K-means聚类6个Anchors预测目标框高宽,提高网络对表面撕裂的检测性能.研制带式输送机多维度智能巡检样机,采集制作输送带多维度面的纵向撕裂数据集,开展网络模型的训练、测试、识别和定位实验.结果表明,提出算法在测试集中的平均识别准确率为97.8%,识别速度为37帧/s,模型的计算量和参数量为4.882 G和8.851 M,通过试验不同的网络模型效果和改变光照强度,该方法体现出检测精度高、速度快和轻量化等优点,具备更强的适应性和抗干扰能力.
- 单位