在钢结构数字化检测中,点云与设计模型的配准是进行数字化检测的关键步骤,配准的精确度决定了检测分析的准确度。传统配准方法一般先进行粗配准再进行精确配准,计算量大且收敛速度缓慢。针对精确配准存在的问题,本文提出了基于改进的自适应遗传算法用于点云与设计模型的配准方法,自适应地调整交叉概率与变异概率的执行顺序及概率值的大小,提高了种群的多样性及收敛速度。试验证明,改进后的自适应遗传算法极大地提高了点云与模型配准精度和收敛速度。