摘要
冠脉计算机断层扫描血管造影(CTA)图像分割在辅助医生判断血管堵塞、血管疾病诊断等许多实际应用中发挥重要作用。针对CTA图像中存在大量噪声和FCN、U-Net、V-Net等经典深度学习算法分割结果不细腻的问题,提出了全局特征及多层次特征聚合网络。这种新型的网络由全局特征模块、特征融合与V形细化多层次特征聚合模块以及深度监督三部分组成。全局特征模块综合早期和后期特征信息,在融合丰富的细节和语义信息基础上实现对原始CTA图像过滤操作,生成基础特征。细化V形模块在基础特征的基础上生成不同层次的细化特征图,通过聚合不同层次的细化特征图,得到精准冠脉分割图像。此外,在每一个细化V形模块之后加入深度监督机制来避免梯度消失的问题。对提出的方法进行了定量与定性的分析,结果表明,该方法优于主流基线。消融实验也证明了每个模块的有效性。
- 单位