摘要
嵌入式智能计算系统因其功耗受限和多传感器实时智能处理需要,对硬件平台的智能算力能效比和智能计算业务并行度提出了严峻挑战.传统嵌入式计算系统常采用的DSP+FPGA数字信号处理架构,无法适用于多个神经网络模型加速场景.本文基于ARM+DLP+SRIO嵌入式异构智能计算架构,利用智能处理器多片多核多内存通道特性,提出了并行多流水线设计方法 .该方法充分考虑智能计算业务中数据传输、拷贝、推理、结果反馈等环节时间开销,为不同的神经网络模型合理分配智能算力资源,以达到最大的端到端智能计算业务吞吐率.实验结果表明,采用并行多流水线设计方法的深度学习处理器利用率较单流水线平均提高约25.2%,较无流水线平均提高约30.7%,满足可见光、红外、SAR等多模图像实时智能处理需求,具有实际应用价值.
- 单位