摘要
【目的】点云密度是影响机载激光雷达数据获取和预处理成本的关键因素,探明点云密度对森林参数估测精度的影响,为机载激光雷达大区域森林调查监测应用技术方案的优化提供参考依据。【方法】基于我国广西一个亚热带山地丘陵区域获取的机载激光雷达和样地数据,通过系统稀疏方法,将全密度点云(4.35点·m-2)分别稀疏至4.0、3.5、3.0、2.5、2.0、1.5、1.0、0.5、0.2和0.1点m-2,得到11个样地尺度的点云数据集,包括1个全密度和10个稀疏密度点云数据集;应用配对样本t检验方法,分析4种森林类型(杉木林、松树林、桉树林和阔叶林)中稀疏密度点云和全密度点云之间12个激光雷达变量的差异;通过变量和结构固定的多元乘幂模型式,分别采用不同密度点云数据集对林分蓄积量(VOL)和断面积(BA)进行估测,比较模型优度统计指标决定系数(R2)、相对均方根误差(rRMSE)和平均预估误差(MPE)的差异,并应用t检验方法分析稀疏密度点云VOL和BA估测值均值和全密度点云相应估测值均值的差异。【结果】1)点云密度较低时,稀疏密度点云分位数高度(ph25、ph50和ph75)的均值与全密度点云相应变量的均值存在显著性差异,但不同森林类型、不同变量出现显著性差异时的点云密度不同,各森林类型中稀疏密度点云平均高(Hmean)和点云高变动系数(Hcv)的均值与全密度点云相应变量的均值基本不存在显著性差异,但点云最大高(Hmax)的均值存在显著性差异;2)各森林类型中,稀疏密度点云冠层覆盖度(CC)和中下层分位数密度(dh25)的均值与全密度点云相应变量的均值差异不显著(阔叶林dh25除外),但中上层分位数密度(dh50和dh75)存在显著性差异;3)各森林类型中,稀疏密度点云平均叶面积密度(LADmean)的均值与全密度点云LADmean的均值存在显著性差异,当点云密度较低时,稀疏密度点云叶面积密度变动系数(LADcv)的均值与全密度点云LADcv的均值存在显著性差异;4)各森林类型中,不同密度点云VOL和BA估测值差异很小,且均不存在显著性差异,但随点云密度降低,杉木林、松树林和桉树林VOL和BA估测模型的R2缓慢逐渐减小,rRMSE和MPE缓慢逐渐增大,森林参数估测精度逐渐降低,阔叶林VOL和BA估测模型的R2、rRMSE和MPE受点云密度变化影响不大。【结论】点云密度降低导致激光雷达变量标准差增大是造成森林参数估测模型精度降低的主要原因,在实际机载激光雷达森林资源调查监测应用中,点云密度以大于0.5点·m-2为宜。
- 单位