摘要

基于Timoshenko梁理论研究两端夹紧、一端夹紧一端简支、两端简支三种不同边界条件下的轴向运动功能梯度材料(FGM)梁在热冲击载荷作用下的自由振动响应。利用Hamilton原理推导热冲击下轴向运动FGM梁的自由振动控制微分方程,并采用分离变量法求解一维热传导方程。通过微分求积法(DQM)在梁的长度方向进行离散,将原方程转化为四阶广义特征值问题,求解FGM梁自由振动的无量纲固有频率并进行特性分析。考虑了不同热冲击载荷,不同梯度指数和不同轴向运动无量纲速度对FGM梁自振频率的影响。结果表明:热冲击载荷越大,对降低FGM梁的固有频率的效果越明显;在轴向运动速度和热流输入不改变的情况下,逐渐增大材料梯度指数会使FGM梁的固有频率随之减小;FGM梁对热冲击短时间内有减缓作用,相对于均匀材料一阶失稳所需时间更长,受到热冲击的FGM梁在轴向运动时也更快达到失稳状态。