摘要

为了帮助用户选择尽可能满足其个性化偏好的物流配送服务,结合配送服务的多属性评分特点,本文构建了基于多属性协同过滤的推荐算法,对传统协同过滤算法进行了延伸与改进,首先预测目标用户对候选服务各属性的评分值,通过引入服务的个性化特征因子减小热门服务对用户相似度计算的误差,考虑到用户的服务属性评分存在波动性,使用信息熵将用户历史评分均值与协同过滤得到的预测值相结合进行修正,然后基于同一用户对不同属性评分波动性的差异,计算得到用户对服务所有属性的评分预测权重,将各属性的评分预测值与对应权重加权求和进行服务推荐.对配送服务交易的评分数据样本进行实验验证,在准确率和平均绝对误差指标上有较好的表现,将算法应用于物流配送服务平台,构建推荐系统,能够提高平台个性化服务能力.

全文