摘要
为解决单一推荐算法应用具有局限性和用户行为数据具有稀疏性的问题,将迁移学习方法应用到组合推荐算法.该算法首先分别利用矩阵分解(MF)推荐算法和深度神经网络(DNN)推荐算法对用户行为数据进行预测,然后利用迁移学习方法将训练出来的特征数据作为组合推荐算法的输入,并进行再次训练,获得预测评分,实现对目标用户的推荐.实验结果表明,具有迁移学习的基于矩阵分解和深度神经网络的组合推荐算法能够有效地提升推荐质量.
-
单位中国人民解放军空军预警学院