摘要

针对未知环境中六足机器人的自主导航问题,设计了一种基于模糊神经网络的自主导航闭环控制算法,并依据该算法设计了六足机器人的导航控制系统.算法融合了模糊控制的逻辑推理能力与神经网络的学习训练能力,并引入闭环控制方法对算法进行优化.所设计的控制系统由信息输入、模糊神经网络、指令执行以及信息反馈4个模块组成.环境及位置信息的感知由GPS(全球定位系统)传感器、电子罗盘传感器和超声波传感器共同完成.采用C语言重建模糊神经网络控制算法,并应用于该系统.通过仿真实验,从理论上论证了基于模糊神经网络的闭环控制算法性能优于开环控制算法,闭环控制算法能够减小六足机器人在遇到障碍物时所绕行的距离,行进速度提高了6.14%,行进时间缩短了8.74%.在此基础上,开展了实物试验.试验结果表明,该控制系统能够实现六足机器人自主导航避障控制功能,相对于开环控制系统,能有效地缩短行进路径,行进速度提高了5.66%,行进时间缩短了7.25%,验证了闭环控制系统的可行性和实用性.

全文