摘要
考虑到航空客流需求序列的季节性、非线性和非平稳等特点,提出了一个基于二次分解重构策略的航空客流需求预测模型。首先,通过STL和自适应噪声互补集成经验模态分解(CEEMDAN)方法对航空客流需求序列进行二次分解,并根据数据复杂度和相关度的特征分析结果进行分量重构;然后,采用模型匹配策略分别选取自回归单整移动平均季节(SARIMA)、自回归单整移动平均(ARIMA)、核极限学习机(KELM)和双向长短期记忆(BiLSTM)网络模型对各重构分量进行预测,其中KELM和BiLSTM模型的超参数通过自适应树Parzen估计(ATPE)算法确定;最后,将重构分量预测结果进行线性集成。以北京首都国际机场、深圳宝安国际机场和海口美兰国际机场的航空客流数据作为研究对象进行了1步和多步预测实验,实验结果表明,与一次分解集成模型STL-SAAB相比,所提模型的均方根误差(RMSE)提升了14.98%~60.72%。可见以“分而治之”思想为指导,所提模型结合模型匹配和重构策略挖掘出了数据的内在发展规律,从而为科学预判航空客流需求变化趋势提供了新思路。
-
单位兰州交通大学; 交通运输学院