摘要
针对应用支持向量回归对不确定控制系统在线建模时精度受异常数据影响的问题,通过分析不同样本分布情况下异常数据的影响,指出增加异常数据邻域的样本密度可以有效地提高建模精度.提出了多率采样的支持向量回归在线建模方法,通过多率采样增加局部样本密度,并利用支持向量回归在小样本学习时的良好性能,构建一种局部样本密集的滚动时间窗,用以减少训练样本数和在线剔除异常数据.将该方法应用于多通道电液力伺服同步加载系统的负荷输出预测,结果表明,与传统单率采样的方法相比,在训练样本只增加2个的情况下,该方法具有更好的鲁棒性和预测精度,预测平均绝对误差达到了0.66%.
-
单位西安交通大学机械制造系统工程国家重点实验室; 西安交通大学