摘要

为了解决多目标优化的相关问题,鲸鱼优化算法结合多目标相关理论,并在算法中加入了反向精英保留、Levy变异以及种群引导,提出了一种求解多目标问题的鲸鱼优化改进算法。该算法利用反向精英保留制度,扩大了每次搜寻的范围,降低了收敛迭代次数,加入的Levy变异增强了算法的全局寻优的性能,并利用种群引导的机制来改善算法的分布情况。在实验验证中将所提出的算法与经典的MOPSO、MOCS、NSGAⅡ、MOWOA算法进行比较。实验的数据表明,改进后的多目标鲸鱼优化算法,收敛的精度更高,收敛速度更快,结果更稳定,是一种应用场景广泛的多目标优化算法。

  • 单位
    哈尔滨商业大学