摘要
随着物流仓储行业快速发展及叉车数量的不断增多,针对叉车作业过程中存在的人员碰撞、挤压、坠落等潜在风险,迫切需要对危险行为进行及时检测和预警。为解决人员值守易漏报误报及传统方法检测精度低的问题,建立基于图像特征识别的叉车检测深度学习模型和算法。通过采集、处理现场视频图像素材,完成模型的训练及性能评价,建立相应的报警规则和报警阈值,搭建测试环境并进行仿真测试,开发相应的软件系统。结果表明:模型检测速率为130 ms/帧,人员靠近叉车准确率为85.6%,叉车举升人员准确率为83.7%,达到良好的实践效果。
-
单位中国石油化工股份有限公司青岛安全工程研究院