摘要

粗糙one-class支持向量机(ROC-SVM)在粗糙集理论基础上通过构建粗糙上超平面和下超平面来处理过拟合问题,但是在寻找最优分类超平面的过程中,忽略了训练样本类内结构这一非常重要的先验知识。因此,提出了一种基于类内散度的粗糙one-class支持向量机(WSROC-SVM),该方法通过最小化训练样本类内散度来优化训练样本类内结构,一方面使训练样本在高维特征空间中与坐标原点的间隔尽可能大,另一方面使得训练样本在粗糙上超平面尽可能紧密。在合成数据集和UCI数据集上的实验结果表明,较原始算法,该方法有着更高的识别率和更好的泛化性能,在解决实际分类问题上更具优越性。