摘要

Many investigations suggest that dissimilatory arsenate-respiring prokaryotes (DARPs) play a key role in stimulating reductive mobilization of As from solid phase into groundwater,but it is not clear how environmental Mn(Ⅱ) affects the DARPs-mediated reductive mobilization of arsenic.To resolve this issue,we collected soil samples from a realgar tailingsaffected area.We found that there were diverse arsenate-respiratory reductase (arr) genes in the soils.The microbial communities had high arsenate-respiring activity,and were able to efficiently stimulate the reductive mobilization of As.Compared to the microcosms without Mn(Ⅱ),addition of 10 mmol/L Mn(Ⅱ) to the microcosms led to 23.99%-251.79% increases in the microbial mobilization of As,and led to 133.3%-239.2% increases in the abundances of arr genes.We further isolated a new cultivable DARP,Bacillus sp.F11,from the arseniccontaminated soils.It completely reduced 1 mmol/L As(V) in 5 days under the optimal reaction conditions.We further found that it was able to efficiently catalyze the reductive mobilization and release of As from the solid phase;the addition of 2 mmol/L Mn(Ⅱ) led to 98.49%-248.78% increases in the F11 cells-mediated reductive mobilization of As,and70.6%-104.4% increases in the arr gene abundances.These data suggest that environmental Mn(Ⅱ) markedly increased the DARPs-mediated reductive mobilization of As in arseniccontaminated soils.This work provided a new insight into the close association between the biogeochemical cycles of arsenic and manganese.

  • 单位
    生物地质与环境地质国家重点实验室