基于深度学习的室内非均匀光线车位状况识别方法

作者:何立火; 钟炎喆; 武天妍; 高新波; 张怡; 李琪琦; 邢志伟; 蔡虹霞; 路文; 王颖
来源:2018-06-11, 中国, ZL201810594592.2.

摘要

本发明公开了一种基于深度学习的室内非均匀光线车位状况识别方法,主要解决现有识别方法在室内非均匀光线下鲁棒性差、识别精度低的问题。其实现步骤包括:1)输入图像;2)筛选图像数据集;3)对图像数据集中的图像进行计算处理,并根据计算结果获取图像标签;4)创建图像与标签一一对应的索引文件;5)搭建深度卷积神经网络CNN模型;6)划分训练集与测试集,并用训练集数据对神经网络进行训练,得到训练后的CNN模型;7)利用训练后的CNN模型获取识别结果。本发明增加了模型的鲁棒性、提高了识别精确度,且应用场景广泛,能够在复杂的室内非均匀光线中完成7分类,得到高精度的车位状况识别结果。