摘要
云计算从分布式存储和分布式计算两个方面为大数据处理提供了强力的支持,并逐渐成为大数据挖掘的主流平台。但是在处理云平台中的大规模数据集时典型聚类挖掘算法存在一定不足,因此,提出一种基于群智能算法的大数据K-means聚类挖掘算法。首先对云计算Hadoop框架的存储数据能力和采用的Map Reduce计算模型进行分析,然后采用群智能算法对传统数据挖掘K-means聚类算法进行改进,解决其容易陷入局部最优问题。实验结果表明,相比加权K-means聚类算法,提出的改进算法表现出更好的聚类精度和运行速度,可以适用于大规模数据的聚类挖掘。
-
单位南京森林警察学院