在数据挖掘中,Apriori算法用于从大型数据库中提取频繁项集,从而获取用于发现知识的关联规则。文中指出了原始的Apriori算法在生成频繁项集的过程中需要大量的时间扫描数据库,由此产生庞大的候选项集,存在算法执行效率低的问题。对于以上问题,提出一种优化的Apriori关联规则算法,该算法通过减少扫描部分事务的时间,从而达到减少生成候选项集的方法。文中通过多组实验数据验证表明,优化的Apriori关联规则算法具有较高的执行效率。