摘要
针对肺炎CT图像病灶区域不连续以及与正常组织间差异小,导致难以提取边缘特征以及病变区域噪声较多等问题,提出了一种全局与局部并行分割网络。该网络采用分层PVTv2和ResNet50从全局与局部特征角度提取病变区域的特征。并且,在全局与局部网络之间加入双注意力特征融合模块聚合各层特征信息,有效捕捉病变区域的语义信息和空间细节。同时,为提高网络对病变区域噪声的识别能力,还提出了多尺度并行残差解码器,动态调节权重,使网络高效地利用浅层和深层特征。最后,采用边缘监督机制,在具有边缘信息的低层特征上增强病灶边界的感知能力。在COVID-19-CT-Seg公开数据集上进行测试,Dice系数为76.8%、灵敏度为79.4%、特异度为96.4%,相较于Inf-net网络,分别提升了8.6%、10.2%、9.1%。在另一肺炎分割数据集上测试,Dice系数为75.3%。结果表明,对比其他方法,该方法能够有效地分割肺炎CT图像病灶区域,具有较好的泛化性能,同时为进一步肺炎CT量化处理提供方案。
- 单位