摘要

针对在低信噪比目标检测问题中,基于PHD的粒子滤波检测前跟踪算法(PHD-TBD)存在目标位置估计误差较大的缺陷,提出一种结合粒子群优化算法的基于PHD的粒子滤波检测前跟踪方法(PSO-PHD-TBD)。该算法在滤波预测和更新步骤之间加入基于NSGA-Ⅱ的多目标粒子群优化算法,结合量测信息将预测完成的粒子集的分布进行优化,将所有粒子转移到后验概率密度较大的区域,进而改善了多目标位置估计的性能;然后使用基于密度聚类的DBSCAN算法对粒子聚类,提取目标状态。仿真实验表明,在不同信噪比条件下,PSO-PHD-TBD在多目标数目估计情况与PHD-TBD算法一致,而位置估计精度明显优于PHD-TBD算法。

  • 单位
    中国民航科学技术研究院