摘要
采用螺旋波等离子体化学气相沉积(HWPCVD)技术,以SiH_4作为源反应气体在Si(100)和玻璃衬底上制备了纳米Si薄膜。通过X射线衍射(XRD)、Raman光谱、原子力显微镜(AFM)对所制备的材料结构和形貌等特性进行表征,分析了纳米Si薄膜结构随衬底温度变化的规律。实验结果表明,在较低的衬底温度(100-300℃)范围内,可以实现高晶化度纳米Si薄膜的沉积,颗粒大小在4-8nm之间,样品的晶化度随着衬底温度升高而升高,晶粒大小也随之增大,样品表面光滑,晶粒分布均匀。
- 单位
采用螺旋波等离子体化学气相沉积(HWPCVD)技术,以SiH_4作为源反应气体在Si(100)和玻璃衬底上制备了纳米Si薄膜。通过X射线衍射(XRD)、Raman光谱、原子力显微镜(AFM)对所制备的材料结构和形貌等特性进行表征,分析了纳米Si薄膜结构随衬底温度变化的规律。实验结果表明,在较低的衬底温度(100-300℃)范围内,可以实现高晶化度纳米Si薄膜的沉积,颗粒大小在4-8nm之间,样品的晶化度随着衬底温度升高而升高,晶粒大小也随之增大,样品表面光滑,晶粒分布均匀。