摘要
针对遥感影像车辆检测中背景干扰、目标密集和目标异质性等因素引起的识别精度下降问题,提出了一种融合超像素与多模态感知网络的遥感影像车辆检测方法。首先,基于混合超像素的区域合并规则,通过超像素二分图融合算法将两种模态的超像素分割结果进行融合,提升了不同模态图像超像素分割结果的准确性;其次,提出一种多模态边缘感知网络的遥感影像车辆检测方法 MEANet (Multi-modal Edge Aware Network),引入OPT-FPN模块(Optimized Feature Pyramid Networks)来增强网络学习多尺度目标特征的能力;最后,通过边缘感知模块聚合超像素和多模态融合模块生成的两组边缘特征,进而生成车辆目标的准确边界。在ISPRS Potsdam和ISPRS Vaihingen遥感影像数据集上进行实验,最终的mF1分数分别为91.05%和85.11%。实验结果表明,本文提出的方法在多模态遥感影像车辆高精度检测中有着较好的检测准确度和较好的应用价值。
- 单位