基于Transformer实现文本导向的图像编辑

作者:兰红; 陈子怡*; 刘秦邑
来源:计算机应用研究, 2022, 39(05): 1563-1568.
DOI:10.19734/j.issn.1001-3695.2021.10.0455

摘要

为方便非专业用户修图,提出一种基于Transformer的图像编辑模型TMGAN,使用户可通过自然语言描述自动修改图像属性。TMGAN整体框架采用生成对抗网络,生成器采用Transformer编码器结构提取全局上下文信息,解决生成图像不够真实的问题;判别器包含基于Transformer的多尺度判别器和词级判别器两部分,给生成器细粒度的反馈,生成符合文本描述的目标图像且保留原始图像中与文本描述无关的内容。实验表明,该模型在CUB Bird数据集上,IS(inception score)、FID(Fréchet inception distance)以及MP(manipulation precision)度量指标分别达到了9.07、8.64和0.081。提出的TMGAN模型对比现有模型效果更好,生成图像既满足了给定文本的属性要求又具有高语义性。

全文