摘要

旋转机械在现代生产体系中具有不可替代的作用,其故障诊断技术对避免恶性损坏事故的发生显得尤为重要。如何选择和提取有效的故障特征,将直接影响故障辨识的诊断精度。针对旋转机械故障诊断的非线性、非平稳性等特点,结合半监督学习和流形学习思想,提出了一种半监督拉普拉斯特征映射(SSLE)算法,并将其应用于空气压缩机的故障辨识。该方法充分利用少量标签样本和大量无标签样本信息,提取有利于分类的故障样本低维流形特征,并利用最小二乘支持向量机(LS-SVM)分类器进行了故障分类与辨识。采用非线性的特征学习方式,有效提取了故障信号中的敏感特征信息,增强了故障模式识别的分类性能。压缩机故障辨识试验结果表明,与主成分分析(PCA)算法和拉普拉斯特征映射(LE)算法相比,基于SSLE算法的故障辨识性能更好。

全文