摘要
客户流失是企业面临的一个重要问题,为及时发现流失客户,降低企业损失,目前已有许多研究对客户流失问题给出解决方案,但是大部分研究中使用的是浅层学习算法,预测结果依赖于特征选择,需要在特征工程上花费大量的时间和精力。随着客户数据的快速增长,在大数据情况下,人工特征工程已不能有效地获取高质量特征。深度学习通过模拟人脑多层、逐级地抽取信息特征,能自动学习到较好的数据特征,在图像识别、语音识别等领域取得显著成果。为研究深度学习在客户流失预测方面的应用,构造了基于深度神经网络的流失预测模型,并在电信客户数据集上,与经过特征选择的Logistic回归、决策树等预测模型作对比,验证其预测准确度。实验结果表明,深度神经网络模型取得了较好的预测效果。
- 单位