基于软件定义网络和移动边缘计算的车联网高效任务卸载方案

作者:韦睿; 祝长鸿; 王怡; 黄业恒; 唐煜星; 熊泽凯; 覃团发*
来源:计算机应用研究, 2023, 40(06): 1817-1824.
DOI:10.19734/j.issn.1001-3695.2022.10.0630

摘要

随着车联网(IoV)中车辆和智能应用数目的增加使计算密集型任务激增,传统架构难以满足用户需求。为解决车联网计算资源不足且分配不均匀、应用时延需求无法满足、任务能耗成本较高的问题,结合移动边缘计算(MEC)和软件定义网络(SDN),设计了一种从宏基站到MEC服务器到车辆的车联网架构中的高效任务卸载方案,并提出一种改进的低复杂度非支配排序遗传算法,优化任务卸载成本和MEC服务器的负载均衡率。实验仿真结果表明,相比于随机卸载,NO-MEC卸载,NO-I卸载,传统NSGA、NSGA-Ⅱ卸载,GA卸载,Q-learning卸载,DQN卸载方案,所提方案有着更低的卸载成本,更优的负载均衡率,得到近似最高的系统效用,能够给车联网中的车辆用户带来更优质的网络服务。

全文