摘要

针对传统k最近邻算法处理多维数据分类时,没有考虑不同属性对分类结果的影响程度存在相异性这一问题,提出一种基于属性重要度的k最近邻算法。将大气压强、风向、风速、气温和相对湿度作为样本属性,将降水量作为类,利用属性空间上同类数据分布的内聚性和异类数据的耦合性确定样本属性的权重,通过属性加权欧氏距离进行近邻搜索,实现最优分类。实验结果表明,该降水模型在性能指标上表现更优,提高了预报结果的准确率、TS评分和正样本概括率,降低了降水预测的标准误差与漏报率。