现实中产生的时间序列数据中一般包含杂讯而且维度很高。符号化此类时间序列数据使得其维度降低,使得发现序列中的模式变得更简单。谱聚类是一种利用图的拉普拉斯矩阵特殊性质的聚类方法。相对于传统的k-means聚类,谱聚类在实际应用中有着更多优势。在那些展现出非凸性质的数据中,谱聚类一般会得到比k-means更符合常识的类。在股票数据使用上述方法,结果显示这种方法是有效的。