基于正交对立学习的改进麻雀搜索算法

作者:王天雷*; 张绮媚; 李俊辉; 周京; 刘人菊; 谭南林
来源:电子测量技术, 2022, 45(10): 57-66.
DOI:10.19651/j.cnki.emt.2209151

摘要

针对麻雀搜索算法种群多样性少,局部搜索能力弱的问题,本文提出了基于正交对立学习的改进型麻雀搜索算法(OOLSSA)。首先,在算法中引入正态变异算子,丰富算法种群多样性;其次,利用对立学习策略,增强算法跳出局部最优的能力;然后,在加入者更新之后引入正交对立学习机制,加快算法的收敛速度;最后,基于15个基准测试函数与6个传统优化算法和2个改进型算法进行仿真实验、非参数Friedman检验以及算法平衡能力进行分析,评估OOLSSA算法寻优性能。仿真结果证明,OOLSSA与其余8种算法相比,算法的探索开发能力以及收敛速度都表现良好。

全文