摘要

自然场景下监控设备所拍摄的行人图片总是存在被各种障碍物遮挡的情况,因此遮挡是行人再辨识面临的一个很大的挑战.针对上述问题,提出了一种集成空间注意力和姿态估计的遮挡行人再辨识模型(spatial attention and pose estimation, SAPE).为了同时兼顾全局特征以及局部特征,实现特征的多细粒度表示,构建了多任务网络.通过空间注意力机制将感兴趣区域锚定到图像中未遮挡的空间语义信息,从全局结构模式中挖掘有助于再辨识的视觉知识;然后结合分块匹配的思想,将残差网络提取到的特征图水平均匀分割成若干块,通过局部特征的匹配增加辨识的细粒度;此基础之上,改进姿态估计器提取图像中行人的关键点信息与卷积神经网络抽取的特征图相融合,并设置阈值去除掉遮挡区域,得到辨识性强的特征,以消除遮挡对再辨识结果的影响.在Occluded-DukeMTMC, Occluded-REID, Partial-REID这3个数据集上验证了SAPE模型的有效性,实验结果表明提出的针对遮挡的模型具有良好的效果.