摘要
在聚合物加工过程中,如果在同一生产线上混用不同牌号的原材料,可能会影响产品性能,降低产品合格率。然而采用传统方法识别相同类型不同牌号的聚合物往往耗时长且具有滞后性,目前还缺乏一种快速实时的牌号识别方法。因此,以5种不同牌号的通用聚苯乙烯(GPPS)为研究对象,利用自主开发的安装于挤出机上的在线近红外光谱测量系统,将近红外光谱与化学计量学、机器学习算法相结合,实现对挤出过程中GPPS牌号的快速在线识别。首先利用在线近红外光谱测量系统实时采集5种不同牌号GPPS熔体的在线近红外光谱,波长范围为900~1 700 nm。经过谱图分析后,利用主成分分析结合K均值聚类算法验证在线近红外光谱数据对于不同牌号的可分性。最后采用偏最小二乘判别分析和随机森林两种算法分别建立GPPS牌号识别模型并进行对比。结果表明:(1)经过基线校正、最大最小归一化、 7点移动平均平滑预处理后,在线近红外光谱在1 207, 1 388, 1 407和1 429 nm处的特征峰峰值会随着牌号的变化呈阶梯状改变,以前3个主成分得分作为K均值聚类的输入变量得到聚类正确率为88%,说明了不同牌号GPPS在线近红外光谱数据的可分性;(2)所建立的两种预测模型均能够对GPPS牌号有效识别,最佳主因子数为3的偏最小二乘判别分析模型对验证集的分类正确率为90.4%,以前5个主成分得分作为输入变量建立的随机森林模型对验证集的分类正确率达95.6%,所以随机森林模型的牌号识别性能更好。因此,在线近红外光谱测量系统结合化学计量学、机器学习算法可以实现GPPS牌号的快速在线识别,为在生产线上利用近红外光谱识别同种聚合物的不同牌号提供参考。
- 单位