摘要
为提高土壤养分近红外光谱预测模型的鲁棒性和预测精度,提出一种基于改进遗传算法的近红外区间光谱特征波长变量选择方法.利用土壤速效磷近红外光谱全光谱波长变量纯度梯度的正负变化次数将全光谱划分为多个波长间隔,以偏最小二乘回归模型(PLS-R)输出的变量投影重要性系数(VVIP)大于1作为提取准则,提取对土壤养分预测目标量解释性较强的波长间隔,并合并成一个区间光谱.建立区间光谱特征波长变量(FWV)PLS-R模型,利用改进遗传算法选择PLS-R的均方根误差为最小对应的FWV为最优FWV.试验结果表明:该方法在区间光谱选择最优FWV,能提高回归模型的鲁棒性和预测精度,简化模型结构;改进遗传算法采用一种改进的实数编码差分变异算子,扩大了全局最优解搜索空间,提高了收敛速度.
- 单位