摘要

为了能够快速有效地发现复杂网络中的局部社团,提出一种基于节点内聚系数的局部社团发现算法。该算法选取最大度节点作为起始社团,不断搜索其邻居节点,将满足条件的节点不断加入起始社团从而形成新的社团。在不同规模的真实网络数据集和人工合成数据集上进行实验,并与其他三种局部社团发现算法进行社团划分效果的对比。实验结果表明,该算法能够在较短的运行时间内保持较高模块度来识别复杂网络中的局部社团结构,更适合于大规模复杂网络的社团结构挖掘。