基于图注意力和特征融合的链路预测方法

作者:李峰; 王俊峰*; 陈虹吕
来源:四川大学学报(自然科学版), 2023, 60(05): 102-111.
DOI:10.19907/j.0490-6756.2023.052002

摘要

链路预测是一种还原网络缺失信息的方法,通过当前已观察到的链路,预测实际存在但未被观察到的链路或可能出现的新链路.当前链路预测主要是基于图神经网络的深度学习方法,相比基于规则的启发式方法,前者可有效利用网络拓扑结构信息,较大地提升了网络链路预测性能,并可应用到类型更广泛的网络中.但是现有基于图神经网络的方法,仅利用网络中节点相对位置信息,忽视了节点基本属性和链路的邻居信息,且无法区分不同节点对链路形成的重要程度.为此,本文提出一种基于图注意力网络和特征融合的链路预测方法.通过增加节点的度、链路的共同邻居数量和共同邻居最大度等特征,丰富了网络的输入特征信息.本文首先提取以目标节点对为中心的子图,然后将其转化为对应的线图,线图中的节点和原图中的链路一一对应,从而将原图节点和链路信息融合到线图的节点中,提升了特征融合的有效性和可解释性.同时本文使用图注意力机制学习节点的权重,增强了特征融合的灵活性.实验表明,本文所提出的方法,在多个不同领域数据集上的AUC和AP均超过90%,在已观测链路缺失较多时,预测性能保持80%以上,且均优于现有最新方法.

全文