摘要

基于油中溶解气体分析法,采用径向基函数(radical basis function,RBF)神经网络模型对电力变压器进行故障诊断。为了提高诊断模型的辨识精度,分两步对RBF神经网络的模型参数进行辨识:首先采用减聚类算法确定RBF神经网络隐含层基函数的中心点,然后采用量子粒子群优化(quantum-behaved particle swarm opti-mization,QPSO)算法求解基函数的宽度以及隐含层与输出层的连接权重。仿真实验结果表明,该方法的故障诊断正确率较高,达90.67%。

  • 单位
    广东省电力设计研究院