基于特征选择与机器学习的煤与瓦斯突出危险等级协同预测方法

作者:林海飞; 周捷; 金洪伟; 李树刚; 赵鹏翔; 刘时豪
来源:采矿与安全工程学报, 2023, 40(02): 361-370.
DOI:10.13545/j.cnki.jmse.2022.0010

摘要

煤与瓦斯突出危险性预测可有效防止煤矿井下突出灾害事故。为进一步提高煤与瓦斯突出危险等级预测的科学性及准确性,构建了基于多算法和多元分析的煤与瓦斯突出动态预测模型。选择51组煤与瓦斯突出工程案例数据作为样本集,对样本数据进行空值填补、数据标准化等预处理,通过引入6种特征选择方法及6种有监督机器学习算法构建了42种煤与瓦斯突出危险等级预测模型。采用准确率、混淆矩阵、Kappa系数及F1值等指标对预测模型的性能进行验证与评估,筛选出精度及稳定度高的4种机器学习算法和3种特征参数组合,确定了8种最优分类模型,并对8组典型的煤与瓦斯突出事故案例进行等级预测。结果表明:8种最优分类预测模型准确率为0.667~0.961,Kappa系数为0.625~0.920,F1值为0.615~1;实际案例煤与瓦斯突出预测准确率为100%,突出等级预测准确率为87.5%。所构建的多参数、多算法、多组合、多判定指标的煤与瓦斯突出等级协同预测模型精度较高,且具有一定的普适性,可为煤与瓦斯突出危险等级预测提供一种新思路。

全文