摘要
提出了运用近红外光谱技术检测新鲜马铃薯叶片中含水量的方法,并通过预测结果和运算量的对比得出一种高效率的预测方法。采集了900~2 100 nm波段范围内110个新鲜马铃薯叶片的光谱反射率信息,经SG(Savitzky-Golay)平滑、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理后,分别建立偏最小二乘回归(PLSR)模型和BP神经网络模型,再运用回归系数(regression coefficients, RC)法在全波段光谱中提取特征波长,同样经3种预处理后分别建立预测模型。结果表明:在运用光谱全波段信息构建的模型中,经多元散射校正(MSC)预处理建立的BP神经网络模型预测效果最好,预测集决定系数R2为0.979 1,均方根误差RMSE为0.372 3;在基于特征波长构建的模型中,经SG平滑预处理建立的神经网络模型预测效果最优,预测集决定系数R2为0.965 8,均方根误差RMSE为0.475 9;验证了特征波段结合BP神经网络建立的模型与全波段建立的模型预测结果相差不大,因而能够极大地减少运算量,提高预测效率。
- 单位