摘要
运营状态下桥梁结构挠度、车载和温度的相关性复杂,高精度的车载、温度与挠度相关性模型对桥梁结构健康监测具有重要意义。为此,提出了基于门控循环单元(gated recurrent unit, GRU)神经网络的桥梁挠度监测数据建模方法。为解决车辆荷载监测数据在时域内离散分布的问题,提出了基于挠度影响线的车载影响参数计算方法;在此基础上建立了基于GRU神经网络的车载影响参数、环境温度和桥梁挠度相关性模型。以一座悬索桥为例,分别建立了短时段、中长时段的相关性模型,考察了相关性模型对加劲梁挠度的预测能力,并利用相关性模型提出了一种温度和车载挠度分量的分离方法。悬索桥实例研究表明:短时段相关性模型的挠度预测值与实时监测数据基本吻合,而中长时段相关性模型则对一定时间窗口内的挠度极值具有精确的预测能力;采用相关性模型计算得到的温度与车载挠度分量与小波分解结果具有良好的一致性。
- 单位