集成学习人工蜂群算法

作者:杜振鑫; 刘广钟; 赵学华*
来源:西安电子科技大学学报, 2019, 46(02): 124-131.
DOI:10.19665/j.issn1001-2400.2019.02.021

摘要

为了抑制人工蜂群算法中的早熟收敛问题,提出一种集成学习框架,挖掘种群中的有用信息来抑制早熟。当个体产生候选解的时候,通过对所有好于当前解的个体线性组合,产生一个集成最优解;然后利用相应的人工蜂群算法的搜索公式产生候选解,该公式中的全局最优解被集成最优解代替。该框架通过产生更有希望的个体带领算法进化,帮助算法逃离局部最优解。实验表明,新的集成学习框架显著地提高了全局最优解引导的人工蜂群算法的性能,而没有增加算法的计算复杂度,且该框架可提高全局最优解引导的差分、粒子群算法的性能。

全文