摘要
目的:探讨径向基(RBF)人工神经网络在宫颈细胞图像识别中的应用。方法:提取宫颈细胞和细胞核的15个形态学特征参数及12个色度学特征参数,对700个宫颈细胞按正常、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)、宫颈癌进行分类识别。利用软件STATISTICA 7.0建立网络模型并训练,用VC++.NET语言调用网络。结果:RBF网络对训练集的拟合度为97.3%,对测试集的分类准确率为95.4%。在测试集中,正常细胞的识别率为96%,LSIL细胞识别率为94%,HSIL细胞识别率为100%,癌细胞识别率为88%。RBF网络输入参数的敏感度排序与细胞病理学特征基本一致。结论:RB...
-
单位中国医科大学; 中国医科大学附属第一医院; 公共卫生学院; 辽宁沈阳; 基础医学院