摘要
将知识图谱中的辅助知识应用于推荐系统中,在一定程度上可以缓解数据稀疏问题。但现有基于知识图谱的推荐方法大多只利用实体间的显式关系建模用户行为,而用户和推荐物品之间可能存在无法显式表达的关系。因此,该文提出了一种融合知识图谱传播特征和提示学习范式的推荐模型。首先,以用户与物品的历史交互为起点,利用知识图谱传播用户偏好,获得用户的动态行为信息;然后,将用户静态属性特征信息作为输入,利用提示学习技术,引入预训练语言模型中的隐式知识,挖掘出用户的潜在兴趣,作为对知识图谱显式知识的补充;最后,根据模板词在预训练语言模型词汇表中的概率完成对用户的推荐。实验表明,该方法在MovieLens-1M、Book-Crossing和Last.FM三个数据集上与其他模型相比具有良好的推荐性能,在AUC评价指标上平均分别提升6.4%、4.0%和3.6%,在F1评价指标上平均分别提升了6.0%、1.8%和3.2%。
- 单位