摘要
提出了一种基于卷积神经网络的3D人体特征识别算法。首先,获取训练数据,具体包括数据的去冗余、3D到2D的投影以及人体局部区域图像的获取。然后,根据局部图像的大小,设计神经网络的结构,并进行参数初始化,对网络进行训练,通过调整网络参数提高网络的准确度。基于训练好的网络,通过对人体自上而下的扫描获取的人体局部图像进行特征识别并获取其对应的特征概率,通过阈值以及特征变化判定出特征出现在人体的的相对位置。然后,使用最小二乘拟合将经过该位置的横向切面与3D人体模型相交的二维点离散坐标点进行闭合曲线拟合,计算出人体各部位的尺寸。最后将测试结果与标准测量结果进行比较,计算出误差值。仿真实验结果表明,通过该方法可以较好的实现对各种差异性3D扫描人体模型的特征识别。
-
单位北京服装学院